

Study of interactions between a freshwater lake and groundwater in a Mediterranean coastal area by means of hydrochemical indicators

M.C. CAPUTO, L. DE CARLO, M.C. EKIZ, R. MASCIALE, <u>A. VOLPE</u>

Water Research Institute, National Research Council (IRSA-CNR)

Meeting

FU.CO.KA Project

Missione 4	1		
Istruzione	e	Rice	erca

BARI 22 gennaio 2025

INTERACTIONS BETWEEN GROUNDWATER AND SURFACE WATER IN A COASTAL AREA

A freshwater lake fed by the underlying aquifer is a valuable drinking water resource in a coastal semi-arid area.

The aim is to assess the correlation between groundwater and lake water chemistry by understanding:

- the origin of dissolved chemical species;
- the variations of water quality over time;
- the potential influence of seawater intrusion.

Missione 4 Istruzione e Ricerca BARI 22 gennaio 2025

1. Study area and data collection

2. Methodology

3. Results

Missione 4	}		
Istruzione	e	Rice	rCa

BARI 22 gennaio 2025

FU.CO.KA Project

STUDY AREA AND DATA COLLECTION

THE ALIMINI WATER SYSTEM

Location: Salento Peninsula, South-Eastern Italy

Two shallow lakes lying above a carbonate aquifer:

- *Alimini Grande* (area = 1.37 km²): brackish water
- *Alimini Piccolo* (area = 0.8 km²): freshwater

Water can flow only in one direction through the connecting channel.

Missione 4 Istruzione e Ricerca BARI 22 gennaio 2025

FIELD DATA COLLECTION

Groundwater monitoring

- Water level measurements in 52 wells
- Sampling for chemical analysis in 9 wells

Alimini Piccolo lake water monitoring

- Water level measurements in one point
- Sampling for chemical analysis in 5 points

Missione 4 Istruzione e Ricerca BARI 22 gennaio 2025

Istruzione e Ricerca

WATER SAMPLING PLAN

Monitoring over one hydrological year (Sep. 2013 – Sep. 2014) in both the dry (D) and the wet (W) season

Four groundwater sampling campaigns

- 4 coastal wells (blue)
- 5 inland wells (brown)

BARI

22 gennaio 2025

Seven Alimini Piccolo sampling campaigns

- 4 sampling points in the lake (green)
- 1 sampling point at the main spring (pink)

Meeting FU.CO.KA Project Fu.Co.Ka.

GEOCHEMICAL INTERPRETATION OF WATER QUALITY DATA

Analysis of hydrochemical indicators (mean values calculated over both the dry and the wet season)

Missione 4	ļ.
Istruzione	e Ricerca

BARI 22 gennaio 2025

CHADHA PLOT

Identification of groundwater types (hydrochemical facies) and specific hydrochemical processes

- Groundwater chemistry is dominated by carbonate minerals dissolution.
- Composition can be related to the well distance from the coast.
- Lake data points reveal higher salinity than groundwater and the influence of seasonality.

LEGEND			
Groun	dwater	La	ke
◇ P67-D	 P67-W 	○ LC-D	LC-W
🗆 018-D	O18-W	🗆 RG-D	RG-W
△ P114-D	▲ P114-W	△ FS-D	▲ FS-W
○ P25-D	• P25-W	♦ FE-D	 FE-W
◇ P61-D	 P61-W 	○ S-D	S-W
○ P59-D	• P59-W		
D P94-D	P94-W	End-m	embers
△ P78-D	A P78-W	• S\M/	● E\A/
ж 07-D	× 07-W	- 500	
D = 0	dry season	W = wet seas	on

Missione 4 Istruzione e Ricerca BARI 22 gennaio 2025

CHECKING THE INFLUENCE OF PROCESSES OTHER THAN MINERAL DISSOLUTION

- Deviation from the linear 1:1 trend of bicarbonate vs. cations may be an index of ion exchange.
- The contribution of sulphate to ion balance should be ascribed to the intake of sea salts.
- Lake water shows the lowest concentrations of bicarbonate.
- At the main spring sampling point lake water quality resembles that of the feeding groundwater.

Missione 4

Istruzione e Ricerca

CHECKING THE INFLUENCE OF CATION EXCHANGE

P67-W

018-W

A P114-W

• P25-W

P61-W

P59-W

P94-W

▲ P78-W

× 07-W

BARI

22 gennaio 2025

CAI = Chloro-alkali indices

$$CAI I = \frac{Cl^{-} - (Na^{+} + K^{+})}{Cl^{-}}$$
$$CAI II = \frac{Cl^{-} - (Na^{+} + K^{+})}{SO_{4}^{2-} + HCO_{3}^{-} + CO_{3}^{2-} + NO_{3}^{-}}$$

CAIs and other correlations involving major ions confirm that the role of ion exchange is negligible in our system.

FU.CO.KA Project

Meeting

CHECKING THE OCCURRENCE OF SEAWATER INTRUSION

- HCO₃⁻/Cl⁻ and Mg²⁺/Ca²⁺ values do not suggest the occurrence of seawater intrusion.
- A minor seawater contamination may explain the Na⁺/Cl⁻ values slightly lower than the typical value of seawater.
- The direct input of sea salts affects chloride concentration in lake water.
- Chloride increases in the lake during the dry season due to the effect of evaporation.

ANALYSING THE GROUPING PATTERNS WITHIN THE CHEMICAL DATA SET

- Clusters were consistent with the sample points location
- Within the "lake" cluster, sub-groups identifying sampling campaigns confirmed the seasonal change of composition

CONCLUSIONS

RESULTS

- Lake water quality closely resembled that of groundwater, except for the higher chloride content and the detectable seasonal variations.
- Raw chemical data clustering was consistent with hydrochemical analysis

IMPLICATIONS

This work provides a combined approach to the understanding of groundwater-surface water interactions in a coastal hydrogeological system

	ok		-	1
LU.C	0.N	d.		
	pro	iect		

Missione 4	1	
Istruzione	e	Ricerca

Thank you for your attention!

Angela Volpe

Maria Clementina Caputo

R

Lorenzo De Carlo

Mert Cetin Ekiz

Rita Masciale

Missione 4	
Istruzione e Ricerca	22

BARI 22 gennaio 2025